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The propagation characteristics of inviscid axisymmetric linearized disturbances to
swirling jets are investigated for two families of model velocity profiles. Briggs’
method is applied to dispersion relations to determine when the basic swirling jets
are absolutely or convectively unstable. The method is also applied to the neutral
inertial waves used by Benjamin to characterize the subcritical or supercritical nature
of the flow. Although these waves are neutral, Briggs’ method nonetheless indicates
a qualitative change in behaviour at Benjamin’s criticality condition. The first model
jet has uniform axial velocity, rigid-body rotation and issues into still fluid. A known
difficulty in the application of Briggs’ method to the analytical dispersion relation for
inviscid waves in this flow is resolved. The difficulty is that the pinch point can cross
into the left half of the complex-wavenumber plane, where waves grow exponentially
with radius and fail to satisfy homogeneous boundary conditions. In this paper the
physical consequences of this behaviour are explained. It is shown that if the still
fluid is of infinite extent in the radial direction, then the jet is convectively unstable to
axisymmetric waves, but if the jet is confined by an outer cylinder concentric with the
jet axis, then it becomes absolutely unstable to axisymmetric waves provided that the
swirl (ratio of azimuthal to axial velocity) is large enough. This destabilizing effect of
confinement occurs however large the radius of the outer cylinder. A second family
of model swirling jets with smooth profiles and a finite thickness shear layer at the
jet edge is also studied. The inviscid stability equations are solved numerically in this
case. The results from the analytical dispersion relations are reproduced as the shear
layer thickness tends to zero. However, increasing this thickness acts to destabilize the
absolute instability of axisymmetric waves, apparently due to the centrifugal instability
present in the shear layer. It is suggested that the transition from convective to absolute
instability could be associated with the onset of an unsteady vortex breakdown. The
swirl required to produce this transition can be either greater, or less, than the swirl
required to produce the transition from supercritical to subcritical flow, depending on
the details of the basic velocity profiles. A codimension-two point in parameter space
can exist where the unsteady bifurcation associated with the convective–absolute
transition coincides with the steady bifurcation associated with the supercritical–
subcritical transition. Such codimension-two points can control a rich variety of
nonlinear dynamical behaviour.

1. Introduction
This paper is concerned with the instabilities of swirling jets. In particular, the

propagation characteristics of inviscid unstable axisymmetric waves are determined.
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Swirling jets arise in diverse technological applications. The swirl might be introduced
as part of a flow-control strategy, or could occur naturally in the flow. Swirling wakes,
like trailing wing tip vorticities, are another special case of a family of jet/wake flows,
which can have varying degrees of external axial co-flow, or counter-flow, relative to
the axial velocity of the vortex core, and which can be studied using the same methods
as presented here. Another related family of flows, amenable to our approach, has a
swirling jet issuing into a swirling outer flow, as in Ivanic, Foucault & Pecheux (2003).
The present investigation is motivated by the phenomenon of vortex breakdown of
swirling jets in which an axisymmetric bubble of recirculating fluid, with front and
rear stagnation points, spontaneously appears in the fluid. This bubble acts like a
bluff body, and the wake-like flow behind it can break down via helical modes.

Vortex breakdown was first observed in the flow over delta wings in the late 1950s.
Harvey (1962) showed how it could be conveniently studied in swirling flows in
pipes, and many remarkable flow visualizations of vortex breakdown can be seen in
Sarpkaya (1971). Squire (1960) and Harvey (1960) suggested that it arises by a similar
mechanism to that which produces hydraulic jumps in the flow of shallow water.
Benjamin (1962) developed a theoretical framework for describing vortex breakdown,
like a hydraulic jump, as the transition region connecting an upstream supercritical
flow, where all disturbances travel downstream only, to a downstream subcritical flow,
where disturbances can travel upstream and downstream. Benjamin was careful to
distinguish his theory from rival theories that proposed that vortex breakdown is
the outcome of a hydrodynamic instability of the basic swirling jet flow. Benjamin
argued that the supercritical or subcritical state of the flow is determined by the
propagation properties of neutral inviscid inertial waves, and presented a criterion
for the existence of a linearized wave with zero phase velocity, which separates
supercritical from subcritical flows.

Tsai & Widnall (1980) extended these ideas by including non-axisymmetric waves,
arbitrary axial wavenumbers and by considering the group velocity for neutral waves.
In the long-wave limit the neutral waves are non-dispersive and the group velocity
coincides with the phase velocity used by Benjamin. However, the generalization
to include the propagation properties of instability waves requires the use of
Briggs’ (1964) method to distinguish between convectively unstable flows, where
all disturbances travel downstream, as in supercritical flow, and absolutely unstable
flows, where disturbances travel upstream and downstream, as in subcritical flow.
Gaster (1968) independently recognized the importance of the distinction between
absolute and convective instability in shear layers, and these ideas were taken up
again in fluid flows by Huerre & Monkewitz (1985); see also Huerre & Monkewitz
(1990).

Absolute instability is identified by considering the wave packet response to an
impulsive disturbance to an otherwise undisturbed basic flow. This response can
be obtained by evaluating inverse Fourier–Laplace-type transforms over frequencies
and wavenumbers. The frequency (Laplace-type) transform is evaluated by placing
the integration path above singularities in the complex-frequency plane to respect
the principle of causality, i.e. to ensure zero response before introduction of the
impulse, then closing the path in the lower half-plane allows residue theory to be
used. The problem is thus reduced to an integral in the wavenumber plane, and the
integration path is placed on the real axis. At large times this integral can be estimated
by deforming the integration path to cross the highest saddle point whose valleys
contain the real axis. This dominant saddle is the pinch point of Briggs’ method. If
the imaginary part of the frequency at the pinch point is positive in the rest frame
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then the flow is absolutely unstable. For the axisymmetric jets considered here, it
is the axial wavenumber plane that is of interest; the azimuthal wavenumber is an
integer.

A number of authors have investigated the possibility of relating the onset of
vortex breakdown to the onset of a transition of the jet from a convectively unstable
state to an absolutely unstable state, and this is the line of research we have
sought to extend in this paper. After all, it seems reasonable that if a jet supports
unstable waves, then it may be their propagation characteristics that determine the
appearance of vortex breakdown, because they are expected to dominate the flow
field. However, if the unstable waves are only convectively unstable, but the neutral
waves propagate upstream, then these neutral waves could produce breakdown.
Briggs’ method incorporates all modes of the dispersion relation, stable, neutral and
unstable, so Benjamin’s criticality condition, based on neutral inertial waves, can also
be investigated from the perspective of Briggs’ method.

However, we shall show that the unstable waves that are usually the focus of
attention in absolute instability calculations lie on a different Riemann surface to
that of the neutral inertial waves that give rise to Benjamin’s criticality condition.
Therefore, spatio-temporal studies restricted to the most unstable waves fail to capture
the supercritical–subcritical transition.

Our new absolute instability results for swirling jets will be placed in the context
of earlier investigations into the steady bifurcations associated with Benjamin’s
criticality condition. A review of this work on criticality, previous work on the
absolute instability of these flows, and some recent developments in the theory of
absolute and convective instabilities that are particularly relevant to swirling jets,
is presented in § 2. Discussion of the steady bifurcations associated with Benjamin’s
criticality condition is given in § 2.1. These bifurcations give rise to axially periodic
states and solitary waves. The solitary waves can enclose a region of reverse flow and
have been proposed as an explanation for steady axisymmetric vortex breakdown
states. A difficulty often encountered in the application of Brigg’s method to swirling
jets is the migration of the dominant saddle point (pinch point) into the left half
of the complex-wavenumber plane. Examples of this behaviour are discussed in
§ 2.2. These left half-plane modes grow exponentially with the radial coordinate and
seem not to satisfy homogeneous boundary conditions. However, the author has
recently discovered the physical interpretation of this behaviour in the context of the
rotating-disk boundary layer; these developments are explained in § 2.3. An important
consequence is that such flows are sensitive to confinement, even when the confining
boundary is far from the shear layer. In particular, confinement can enhance, or even
create, absolute instability in these flows. These observations are interesting in the
context of vortex breakdown, because flows confined in pipes are often studied in
experiments since they produce more robust breakdown phenomena than unconfined
flows.

The linearized inviscid stability equations for axisymmetric disturbances to a
columnar vortex are presented in § 3. In § 4 we consider the model swirling jet flow
studied by Lim & Redekopp (1998), and Gallaire & Chomaz (2003a), in which a jet in
rigid-body rotation, and with uniform axial velocity, issues into still fluid. This inviscid
flow with discontinuous velocity profiles admits an analytical dispersion relation. It
is shown that confinement can create an absolute instability of axisymmetric waves.
Benjamin’s criticality condition is studied from the perspective of Brigg’s method, and
it is found that for this flow the convective–absolute transition takes place at a higher
swirl (a ratio of azimuthal to axial velocity) than that for the supercritical–subcritical
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Figure 1. Bifurcation diagrams of steady solutions with swirl on horizontal axis and a
measure of axial velocity on vertical axis. Branch I, supercritical primary vortex; branch II,
subcritical conjugate vortex; branch III, solitary waves on supercritical primary vortex; branch
IV, solitary waves on supercritical conjugate vortex; branch V, subcritical primary vortex;
branch VI, supercritical conjugate vortex; A, transcritical bifurcation at Benjamin’s criticality
condition; B and C, pitchfork bifurcations creating standing waves on subcritical branches. (a)
Summary of results of Leibovich & Kribus (1990), including the proposed pitchfork bifurcation
C, for a pipe of fixed finite length L. (b) Possible unfolding of (a) created by including small
viscosity, where A1, A2, B ′ and C ′ are limit points replacing the bifurcation points A, B
and C.

transition (except in a very narrow range of the confinement parameter). A new
model swirling jet with smooth velocity profiles that approaches Lim & Redekopp’s
model as shear layers at the jet edge are reduced in thickness is presented and
analysed in § 5. Thickening the shear layers at the jet edge is found to promote
axisymmetric absolute instability, via centrifugal instability, while at the same time
tending to suppress the transition to subcritical flow. Confinement has little effect
on the supercritical–subcritical transition, but enhances the absolute instability. Thus,
depending on the shear layer thickness, and the level of confinement, a supercritical
and convectively unstable flow can become either subcritical or absolutely unstable
as the swirl parameter is increased. These findings are discussed in § 6.

2. Review
2.1. Supercritical–subcritical transition of swirling jets

Leibovich & Kribus (1990) studied the steady bifurcations of inviscid columnar
vortices in a pipe associated with change in criticality as swirl is varied. They
showed that the first bifurcation encountered as the swirl parameter is increased is a
transcritical bifurcation creating new columnar states that are conjugate to the original
state in the sense used by Benjamin: they are subcritical when the primary (specifying)
columnar vortex is supercritical and they are supercritical when the primary vortex is
subcritical: see figure 1(a). This transcritical bifurcation occurs at the swirl level given
by Benjamin’s criticality condition and is marked A in figure 1(a). For a fixed-length
pipe, there is a pitchfork bifurcation from the subcritical primary vortex, marked B in
figure 1(a), at which small amplitude standing waves appear. These waves have axial
wavelength equal to the length of the pipe, L, which is made dimensionless with pipe
radius, and as the swirl is increased, the wave amplitude increases. The wave crests
become flatter, and the troughs deeper and sharper, as their amplitude is increased,
and the waves evolve in this manner into solitary waves like those found by Benjamin
(1967). Further pitchfork bifurcations from the subcritical primary vortex occur with
increasing swirl (not shown here), producing standing waves with wavelengths L/m
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for integer m, and these too evolve into solitary waves. The velocity profiles at the
flat crests approach those of the supercritical conjugate branch. These solitary waves
therefore ride on the supercritical conjugate branch, but originate from standing waves
appearing at pitchfork bifurcations on the subcritical primary branch. The upper
branch of each pitchfork corresponds to an axial velocity measurement at a wave
crest, and the lower branch to a measurement at a wave trough. Reversed flow occurs
at troughs when the swirl is large enough, which is reminiscent of vortex breakdown.

Leibovich & Kribus also showed that as L increases, the amplitude required to
produce solitary waves reduces, and as L → ∞, weakly nonlinear solitary waves exist
close to criticality. These are the solitary waves first found by Benjamin (1967) and
they ride on the supercritical primary vortex; they are labelled III in figure 1. However,
at fixed L, branch III cannot be continued towards the transcritical bifurcation point
A in the way depicted in figure 19 of Beran & Culick (1992), because, as discussed
in § 3.2 of Leibovich & Kribus, when the wave amplitude is sufficiently small (less
than O(L− 1/2)), the solitary wave theory becomes invalid. We suggest instead that
standing waves should appear at a pitchfork bifurcation, marked C in figure 1(a), at
a fixed finite L, which then evolve into solitary waves further from C, marked III.
Therefore, these solitary waves ride on the primary supercritical branch I, but arise
at a pitchfork bifurcation point, C, on the subcritical conjugate branch II.

However, comparison between these inviscid results and experiments on, or
numerical simulations of, viscous fluids is not straightforward. The transcritical and
pitchfork bifurcations shown in figure 1(a) are structurally unstable, i.e. arbitrarily
small generic imperfections to the system will cause the solution branches to connect
to one another in a qualitatively different arrangement. See Benjamin (1978) for
a discussion of how perturbations to these bifurcations can produce new arrange-
ments of solution branches in the context of hydrodynamic stability problems and
Benjamin & Mullin (1981) for examples of this phenomenon in the Taylor–Couette
experiment.

Wang & Rusak (1997a) have shown in a small-viscosity perturbation theory that
the transcritical bifurcation, A, in the inviscid problem breaks apart to give two
limit points: one, labelled A1 in figure 1(b), connects the supercritical primary vortex
branch I to the subcritical conjugate vortex branch II, and the other, labelled A2,
connects the supercritical conjugate vortex branch VI to the subcritical primary
vortex branch V. Imperfections will also disconnect the pitchfork bifurcations, e.g. as
in figure 1(b), leading to the limit points B ′ and C ′. Thus, while figure 1(a) describes
the behaviour arising at a change in criticality of an inviscid parallel vortex, our
suggested figure 1(b) accounts for the symmetry-breaking imperfections present in
experiments and simulations of viscous fluids.

Beran & Culick (1992) obtained numerical solutions to the steady axisymmetric
viscous equations for swirling flow in a pipe. Numerical continuation methods were
used to follow steady solutions around limit points. At low Reynolds numbers the
minimum centreline axial velocity reduces smoothly as the swirl is increased, but
for higher Reynolds numbers a limit point is encountered, which was associated
with that at A1, i.e. due to the disconnection of the transcritical bifurcation that
appears at criticality in the inviscid theory. When the solution is followed around this
limit point, they found that standing axially periodic waves gradually appear, which
become progressively more like solitary waves: see figures 20 and 22 of Beran &
Culick (1992). These figures correspond closely to our figure 1(b) where branch I
connects to branch II at the limit point A1, and then evolves into the solitary waves
of branch III via standing axially periodic waves that emerge near the perturbed
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pitchfork bifurcation C ′. These solitary waves develop regions of reversed axial flow,
as in vortex breakdown, and as in the inviscid theory of Leibovich & Kribus (1990).

Beran & Culick (1992) also discovered a second limit point causing branch III to
bend back towards the right of the diagram. Wang & Rusak (1997b) found a similar
limit point in their inviscid theory. This pair of limit points gives rise to hysteresis.
Beran & Culick proposed that increasing the swirl above its value at A1 leads to
an abrupt transition to a vortex breakdown state with reversed flow. Lopez (1994)
carried out an axisymmetric time-dependent simulation of swirling flow in a pipe
and confirmed this scenario. Wang & Rusak (1996) have shown that the associated
loss of stability of the steady solutions at A, or A1, is a feature of flow in a finite-
length pipe, even though the solutions would be neutrally stable for an infinitely
long pipe of inviscid fluid. Gallaire & Chomaz (2004) have shown how the boundary
conditions in a finite-length pipe can supply energy to the disturbances and thus
drive the instability. Therefore, in a finite-length pipe, there is an exchange of stability
as well as a supercritical–subcritical transition at the transcritical bifurcation A in
figure 1(a).

In addition to these steady solutions, unsteady axisymmetric solutions have been
observed. Escudier (1984) observed such solutions in an experimental investigation,
Lopez (1994) found them in the time-dependent axisymmetric numerical simulations
referred to above, and Ruith et al. (2003) obtained these solutions when non-
axisymmetric disturbances were switched off in their simulations. Ruith et al. found
that their oscillating axisymmetric solutions were unstable to non-axisymmetric
disturbances, but Escudier’s experimental observations show that these unsteady
solutions can be stable. Liang & Maxworthy (2005) observed unsteady axisymmetric
vortex breakdown in experiments at swirls just below that at which a steady non-
axisymmetric vortex breakdown occurs.

We have discussed how the steady bifurcations of an inviscid primary columnar
vortex originate from Benjamin’s supercritical–subcritical transition. This criticality
condition is associated with the appearance of a zero-wavenumber, zero-phase-
velocity, solution of the dispersion relation for neutral inertial waves. We suggest
that the appearance of unsteady axisymmetric solutions could be associated with
the existence of a convective–absolute instability transition involving waves of finite
wavenumber and finite frequency.

The following review of absolute instability investigations of swirling jets shows
that while absolute instability has often been demonstrated for non-axisymmetric
waves, the calculation of absolute instability of axisymmetric waves has proved much
more problematic. This is due to a tendency of the pinch point of Briggs’ method
(the dominant saddle point in a large-time solution to the initial-value problem)
to move, when the swirl is increased, into the left half of the complex-wavenumber
plane, where solutions grow exponentially in the radial direction. This tendency is also
present in the non-axisymmetric calculations. The interpretation of this behaviour,
and its consequences for the effect of confinement, will be reviewed in § 2.3, and
these insights pave the way for the present investigation of axisymmetric absolute
instability, but would apply equally to non-axisymmetric calculations.

2.2. Convective–absolute transition of swirling jets

Previous studies of the absolute instability of swirling jets and wakes retained an
external-flow parameter, different values of which correspond to different velocities of
the frame of reference. A frame of reference can always be found that will make any
unstable flow absolutely unstable, though usually a particular frame, the laboratory
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frame, has special significance. In this paper, we shall confine our attention to the
case of a swirling jet issuing into an otherwise still body of fluid, i.e. with no external
flow, as in, for example, the experiments by Billant, Chomaz & Huerre (1998) and
Liang & Maxworthy (2005).

Lim & Redekopp (1998) looked at the inviscid instability of axisymmetric waves
added to a model swirling jet with a core in rigid-body rotation and with uniform
axial flow in the core. This basic flow has an analytical dispersion relation. With no
swirl (the swirl is the ratio of the azimuthal velocity scale to the axial velocity scale)
this jet is convectively unstable. As the swirl increases they found that although the
(negative) imaginary part of the frequency at the pinch point increases, the pinch point
crosses into the left half of the complex-wavenumber plane while the imaginary part
of this frequency is still negative. Far from the jet core, waves either grow or decay
exponentially with the radial coordinate. Branch cuts are placed along the imaginary
axes of the wavenumber plane so that only solutions that decay in the radial direction
are considered; these solutions satisfy homogeneous boundary conditions. If the pinch
point is followed into the left half-plane, then a branch cut has to be moved from the
imaginary axis, and the solution at the pinch point then grows exponentially in the
radial direction. Such behaviour seemed unphysical and was not considered further.
However, Lim & Redekopp also noted that in the corresponding confined problem,
where the jet is surrounded by a coaxial cylinder of larger radius than that of the jet,
reducing the radius of this cylinder also increases the imaginary part of the frequency
at the pinch point, though it remained negative for the parameter values that they
considered. Nonetheless, Lim & Redekopp showed that reducing the density of the
jet core relative to the external fluid does produce an axisymmetric inviscid absolute
instability in agreement with results of Monkewitz & Sohn (1988), who looked at the
zero-swirl case.

Loiseleux, Chomaz & Huerre (1998) considered the inviscid absolute instability of
the Rankine vortex with uniform axial flow in its core. The Rankine vortex has a
continuous azimuthal velocity profile with a core in rigid-body rotation surrounded
by a potential vortex; the axial velocity is discontinuous at the jet edge. An analytical
dispersion can be written down for this problem too. In fact, Lim & Redekopp
considered a model with a parameter that included this flow as one limit, and the
flow with no external potential vortex in another limit; Lim & Redekopp found
the external potential vortex to have a stabilizing influence on the pinch point for
axisymmetric waves. Loiseleux et al. explored the spatio-temporal behaviour of waves
with non-zero azimuthal wavenumbers, and their figure 17(c) shows that these pinch-
points can also cross into the left half of the wavenumber plane, but this feature
was not commented upon. Loiseleux et al. also found that matters could be further
complicated by the presence of more than one saddle point, and changes in dominance
between saddle points.

Olendraru et al. (1999) considered the inviscid absolute instability of the Batchelor
vortex, which has smooth axial and azimuthal velocity profiles: see Batchelor (1964).
The Batchelor vortex has fluid in rigid-body rotation at its axis, and asymptotes
to a potential vortex far from the axis; it has been used as a model for wing tip
trailing vorticies, and also for the swirling flows upstream and downstream of a
vortex breakdown. Numerical methods were used to solve the stability equations. The
axisymmetric waves are stable. Figure 8(a) of their paper shows that the pinch point
for the azimuthal wavenumber m = − 1 reaches the imaginary wavenumber axis at
swirl q = 1.3, and would cross into the left half of the wavenumber plane for larger
swirl, but this was not discussed. Neutral curves for the onset of absolute instability
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in the external-flow parameter versus swirl plane are left incomplete at larger swirl
values due to numerical difficulties.

The numerical challenges associated with obtaining inviscid stability results for the
smooth Batchelor vortex, the multiple saddle points and the problem of interpreting
the behaviour of pinch points that cross into the left-half wavenumber plane,
motivated Delbende, Chomaz & Huerre (1998) to develop an alternative to Briggs’
method for determining the absolute or convective character of the instability for
the viscous version of the problem. Their method is based on carrying out a direct
numerical simulation of the linearized equations for a localized disturbance to a
given basic velocity profile (which does not evolve in the downstream direction). Time
series analysis techniques are then applied to data from the simulation to construct
an envelope for the resulting wave packet, and to estimate the growth rate of this
envelope in any given frame of reference. Results were presented at one Reynolds
number (the method is computationally intensive), and qualitative agreement with
Olendraru et al.’s results was obtained. They were also able to complete Olendraru
et al.’s neutral curves at higher swirl values. At their chosen Reynolds number the
Batchelor vortex is convectively unstable for all azimuthal wavenumbers, m, in the
frame with zero external axial flow for all swirl values, but only a small reverse
external axial flow is needed to produce absolute instability. No light could be shed
on the issue of pinch points crossing into the left-half wavenumber plane because
the axial wavenumber was restricted to values greater than 0.6 (made dimensionless
using the jet radius) so that the disturbance decays sufficiently rapidly in the radial
direction for it to be negligible at the cross-stream edge of the computational domain
where boundary conditions are applied.

Ruith et al. (2003) carried out direct numerical simulations using as in-flow
conditions the two-parameter columnar swirling-jet model of Grabowski & Berger
(1976), which has continuous azimuthal and axial velocity profiles with polynomial
radial dependence inside the core, and outside the core there is a potential vortex
and uniform axial flow. In simulations at lower values of the Reynolds number
Ruith et al. found a steady axisymmetric vortex breakdown; as the Reynolds number
increases, the wake-like flow behind this breakdown bubble becomes unstable to
self-sustained helical modes with azimuthal wavenumbers of m = − 1 or m = − 2
dominating. They also found that if non-axisymmetric disturbances are suppressed
then at higher Reynolds numbers the axisymmetric vortex breakdown bubble becomes
time-periodic, as in the experiments by Escudier (1984). Ruith et al. modelled the
axisymmetric flow downstream of the axisymmetric vortex breakdown bubble by
Batchelor vorticies with appropriate swirl and external-flow parameters, and used
Delbende et al. (1998)’s results to show that these profiles become absolutely unstable
to m = − 1 and m = − 2 helical waves. Global mode theories reviewed in Huerre &
Monkewitz (1990) indicate that if there exists a large enough streamwise extent of
flow that is (locally) absolutely unstable, then an unstable linear global mode can
exist. Ruith et al. argued that increasing the Reynolds number extends the locally
absolutely unstable domain of the wake behind the axisymmetric breakdown bubble,
thus leading to an unstable helical linear global mode that, when its amplitude
has been saturated by nonlinearity, accounts for the spiral behaviour seen in their
simulations, and reported in experiments.

This picture is in agreement with the scenario proposed by Escudier, Bornstein &
Maxworthy (1982): the fundamental vortex breakdown structure is the axisymmetric
bubble, which has supercritical flow upstream and subcritical flow downstream. The
helical breakdown modes are then the result of helical instabilities of the wake-like



Inviscid axisymmetric absolute instability of swirling jets 9

flow downstream of the axisymmetric bubble, but the bubble itself was argued not to
be due to an instability. However, the work discussed in § 2.1 suggests that the abrupt
appearance of reversed flow can be associated with the loss of stability at the limit
point A1 found by Beran & Culick (1992) and Lopez (1994), and which can be related
to Benjamin’s criticality condition through Wang & Rusak (1997a)’s unfolding of the
transcritical bifurcation, A, found by Leibovich & Kribus (1990) in the underlying
inviscid problem: see figure 1.

Irrespective of the role of instability in the genesis of axisymmetric vortex
breakdown, Gallaire et al. (2006) have further clarified the role of absolute instability
in generating helical modes downstream of the axisymmetric bubble. They took Ruith
et al.’s axisymmetric vortex breakdown flow as a basic state, and determined the local
stability of velocity profiles at a series of downstream locations using the method
of Delbende et al. (1998). They showed that the self-sustained helical modes found
in Ruith et al.’s simulations can be related to steep-fronted nonlinear global modes
triggered at a streamwise location where there is a transition from convective to
absolute instability, as described by Couairon & Chomaz (1999) and Pier, Huerre &
Chomaz (2001).

While progress has been made in understanding the helical modes of vortex
breakdown in terms of an absolute instability of non-axisymmetric waves, we are
only aware of one study showing axisymmetric absolute instability of a swirling jet
which has no axial flow outside the jet core. Loiseleux, Delbende & Huerre (2000)
investigated a model jet in which the core has uniform axial flow and constant
circulation, and which has a different constant circulation, and no axial flow, outside
the core. The resulting singularity in azimuthal velocity at the jet axis is clearly
unphysical, but an analytical dispersion relation can be written down for inviscid
linearized waves, and the effects of increasing and decreasing jumps in circulation
were investigated. They found that increasing the magnitude of the circulation jump
enhances absolute instability, but which modes will be destabilized depends on the
sign of the jump, with the axisymmetric mode preferred when the jump is centrifugally
destabilizing, and a large negative azimuthal wavenumber preferred when the jump
is centrifugally stabilizing.

However, axisymmetric absolute instability has not been found in more realistic
swirling-jet velocity profiles with finite velocity fields, the difficulty being that in
such flows the pinch point moves into the left half of the wavenumber plane as the
swirl increases. A similar tendency can occur for non-axisymmetric waves, but these
waves can become absolutely unstable before the pinch point reaches the imaginary
wavenumber axis. A pinch point behaving in this way produces waves that decay
more and more slowly in the radial direction, so this behaviour also implies difficulties
for numerical simulations because it means that the computational domain must be
increased substantially in the radial direction. We now review the new developments
in the theory of absolute and convective instabilities that address this issue, provide
the physical interpretation of modes in the left half-plane, and describe the counter-
intuitive destabilizing effect of confinement in such problems.

2.3. Left-half-wavenumber-plane modes

In fact, the problem of the pinch point crossing into the left-half wavenumber plane
is not just a peculiarity of swirling jet flows. It has also been observed in a study
of a smooth plane mixing layer (see Huerre & Monkewitz 1985), and in plane
jets and wakes with variable density and piecewise constant velocity profiles (see
figure 7 of Yu & Monkewitz 1990), figure 4 of Juniper & Candel (2003) and Juniper
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(2006). These occurrences were either ignored in the text (but are apparent from
data in figures), or explicitly dismissed on the grounds that they are unphysical.
For example, Gallaire & Chomaz (2003a) suggested that this apparently unphysical
behaviour indicates the breakdown of validity of the basic flow model (they were
investigating Lim & Redekopp’s flow, which has discontinuous profiles, and therefore
represents an ill-posed initial-value problem because the resulting Kelvin–Helmholtz
instability amplifies arbitrarily short length scales with arbitrarily large growth
rates).

However, Healey (2006a) showed that the pinch point of the absolute instability
in the rotating-disk boundary layer becomes asymptotically close to the imaginary
axis of the appropriate complex-wavenumber plane in the long-wave limit in the
inviscid stability problem. The basic flow was von Kármán’s similarity profile,
which is an exact solution of the Navier–Stokes equations. The stability results
were obtained analytically using matched asymptotic expansions and are a self-
consistent approximation to the Navier–Stokes equation. It was confirmed that they
give accurate quantitative predictions when compared with numerical solutions to the
stability equations. Therefore, pinch points approaching the left half of the complex-
wavenumber plane are genuine features of spatio-temporal hydrodynamic stability
investigations, and require physical interpretation.

A global investigation of the wavenumber plane was needed, which was beyond
the scope of the long-wave theory described above. This was carried out by Healey
(2006b). It was discovered that there are unstable modes that grow exponentially in
the wall-normal direction in the rotating-disk boundary layer when the wavenumbers
are small enough. These modes are efficiently described using parts of the dispersion
relation continued into the left half-plane. Although these roots of the dispersion
relation grow exponentially, and are indeed unbounded in the wall-normal direction,
and therefore do not satisfy homogeneous boundary conditions, the physical
disturbance produced by an initial-value problem does always satisfy homogeneous
boundary conditions. This is because the flow field is initially undisturbed, and the
disturbance created by forcing at the wall only propagates in the wall-normal direction
at finite velocities. The wall-normal propagation velocities can be predicted using a
saddle-point method incorporating terms corresponding to propagation in both the
streamwise and wall-normal directions (by combining the ‘wavy’ complex exponential
with the exponential form of the eigenfunction taken by the disturbance where the
basic flow is uniform). These saddle points can exist in either the left- or right-
hand halves of the complex plane, but their large-time predictions of wall-normal
exponential growth and propagation agree well with numerical evaluations of the
inverse transforms calculated using integration paths that pass only over sheets of the
dispersion relation that decay exponentially in the wall-normal direction. The part
of the dispersion relation that controls the wall-normal growth and propagation has
also been described by long-wave theory: see Healey (2005).

The physical behaviour of wall-normal growth and propagation associated with a
pinch point crossing into the left half-plane is sensitive to how the flow is confined
in the wall-normal direction. One can normally assume that if the boundary to the
flow in the crossflow direction is far enough away, then the exponential decay of
disturbances in the crossflow direction allows the flow to be treated as unconfined
in that direction. However, this is not the case for flows that generate exponential
growth in the crossflow direction: no matter how far away the outer boundary is
placed, it still quantitatively, and qualitatively, affects the spatio-temporal stability
properties of the flow, as first shown by Healey (2007). Disturbances grow in the
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wall-normal direction in accordance with the unconfined-flow theory until they reach
the outer boundary. There is then a period of reflections of the disturbance between
the boundary layer plate and the outer plate while a standing wave is established.
At large times, when the outer plate is far from the boundary layer, this standing
wave has absolute instability growth rate equal to the maximum growth rate of the
wall-normal propagating disturbance of the unconfined flow, and is given by a local
maximum of the imaginary part of the frequency evaluated along the imaginary
wavenumber axis. Moving the outer plate closer to the shear layer actually increases
the absolute instability growth rate (unless the outer plate becomes very close to the
shear layer). Therefore, confinement can, in principle, create an absolutely unstable
flow from one that would only be convectively unstable when unconfined. These
conclusions all follow from the fact that confining a flow is a singular perturbation
since the continuous spectrum arising from a branch cut of the dispersion relation for
the unconfined flow is replaced by an infinite discrete spectrum for the confined flow,
and Healey (2007) has shown how this leads to infinitely many new saddle points
being created, one of which can form the new pinch point.

The results of Lim & Redekopp (1998), Juniper & Candel (2003) and Juniper (2006)
concerning the effect of confinement in problems with pinch points approaching, or
crossing into, the left half-plane are all consistent with the framework developed in
Healey (2006b) and Healey (2007), though the implications of a pinch point entering
the left half-plane, and the expected consequences of confinement on the absolute
instabilities, were not understood at the time. Juniper (2007) has re-examined his
results concerning left half-plane modes in the light of these findings and reproduced
in detail in the context of plane wakes and jets of variable density the scenarios
described in Healey (2006b) and Healey (2007) for the rotating-disk boundary
layer.

In the context of swirling jets, a pinch point with negative imaginary part of
frequency crossing the imaginary axial wavenumber axis has no immediate physical
consequence, but if, as the swirl is increased, a spatial branch with positive imaginary
part of frequency follows the pinch point into the left half-plane, then a convective
instability with exponential growth in the radial direction occurs, and an impulsive
disturbance will generate a radially propagating wave packet that travels away from
the jet, growing in amplitude as it goes. If the surrounding fluid is not of infinite
extent, then a standing wave will eventually be established after the wave packet has
reached the confining boundary. This standing wave will be absolutely unstable even
though the unconfined flow is only convectively unstable. In the following sections
we show that this behaviour in the wavenumber plane does occur for model swirling
jets.

3. Governing equations
In this paper attention is restricted to axisymmetric waves. The dimensional

equations of motion for axisymmetric incompressible inviscid flow in cylindrical
coordinates are

1

r∗

∂(r∗u∗)

∂r∗
+

∂w∗

∂z∗
= 0, (3.1a)

∂u∗

∂t∗
+ u∗

∂u∗

∂r∗
+ w∗

∂u∗

∂z∗
− v2

∗
r∗

= − 1

ρ∗

∂p∗

∂r∗
, (3.1b)
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∂v∗

∂t∗
+ u∗

∂v∗

∂r∗
+ w∗

∂v∗

∂z∗
+

u∗v∗

r∗
= 0, (3.1c)

∂w∗

∂t∗
+ u∗

∂w∗

∂r∗
+ w∗

∂w∗

∂z∗
= − 1

ρ∗

∂p∗

∂z∗
, (3.1d)

where the radial and axial coordinates are r∗ and z∗ respectively, time is t∗ and ρ∗ is
the density of the fluid. The velocities in the radial, azimuthal and axial directions
are u∗, v∗ and w∗ respectively and the pressure is p∗. Lengths are made dimensionless
using the radius of the jet, R, velocities are made dimensionless using the axial velocity
of the jet on the jet axis, U0, and time by R/U0. The dimensionless basic flow velocity
and pressure profiles for a columnar vortex are U (r) = 0, V (r), W (r) and P (r), where
∂P/∂r = V 2/r , and the flow field is expressed as a superposition of this basic flow
and small unsteady disturbances in the form

u∗(r∗, z∗, t∗) = εU0u(r) exp i(kz − ωt), (3.2a)

v∗(r∗, z∗, t∗) = U0V (r) + εU0v(r) exp i(kz − ωt), (3.2b)

w∗(r∗, z∗, t∗) = U0W (r) + εU0w(r) exp i(kz − ωt), (3.2c)

p∗(r∗, z∗, t∗) = ρ∗U
2
0 P (r) + ερ∗U

2
0 p(r) exp i(kz − ωt), (3.2d)

which, when substituted into (3.1), and linearized in the small parameter ε, gives

u′ +
u

r
+ ikw = 0, (3.3a)

−iωu + ikWu − 2V

r
v = −p′, (3.3b)

−iωv + ikWv + V ′u +
V

r
u = 0, (3.3c)

−iωw + ikWw + W ′u = −ikp. (3.3d)

4. A model swirling jet with discontinuous velocity profiles
We re-examine one of the basic flows studied by Lim & Redekopp (1998) in which

a jet in rigid-body rotation, and with uniform axial velocity, is surrounded by still
fluid of the same density. The dimensionless basic flow is

V (r) =

{
Sr for 0 � r � 1,

0 for r > 1,
W (r) =

{
1 for 0 � r � 1,

0 for r > 1.
(4.1a, b)

The swirl, S = ΩR/U0, measures the azimuthal velocity at the jet edge relative to the
axial velocity, where Ω is the angular velocity of the jet. This basic flow is a simple
model for the experiments of Billant et al. (1998) and Liang & Maxworthy (2005).

Substituting (4.1) into (3.3) and eliminating u, v and w for 0 � r � 1 gives

p′′
1 +

p′
1

r
+ k2

[
4S2

(ω − k)2
− 1

]
p1 = 0, (4.2)

where the subscript ‘1’ denotes a variable in the core of the jet. The solution that is
regular at the jet axis is

p1 = J0(βr), (4.3)

where

β2 = k2

[
4S2

(ω − k)2
− 1

]
(4.4)
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and Jm is the order-m Bessel function of the first kind (the solution has been
normalized so that the arbitrary multiplicative constant is unity); the choice of square
root in calculating β is irrelevant because J0 is an even function, see (A 2) in the
Appendix. The radial component of the disturbance, required later, is recovered from

u1 =
ik2

(ω − k)β2
p′

1. (4.5)

Substituting (4.1) into (3.3) and eliminating u, v and w for r > 1 gives

p′′
2 +

p′
2

r
− k2p2 = 0, (4.6)

where the subscript ‘2’ denotes a variable outside the core of the jet. The solution to
(4.6) depends on the choice of outer boundary condition, i.e. on whether the flow is
confined or unconfined in the radial direction.

4.1. Unconfined flow

When the flow is radially unconfined, the solution satisfying homogeneous boundary
conditions, i.e. that decays exponentially as r → ∞, is

p2 = AK0(
√

k2r), (4.7)

where A is a constant of integration, Km is the order-m modified Bessel function of the
second kind and the square-root has positive real part, which implies branch-cuts on
the imaginary axes of the complex k-plane. The radial component of the disturbance,
required later, is recovered from

u2 = − i

ω
p′

2. (4.8)

The solutions in the core are matched to those outside the core by satisfying two
jump conditions, which leads to the dispersion relation: see Drazin & Reid (1981).
The kinematic condition requires the interface to move with the radial velocity in
each region; it leads to

u1(1)

ω − k
=

u2(1)

ω
. (4.9)

The dynamic condition requires continuity of pressure across the interface; it leads to

p2(1) = p1(1) +
iS2

ω − k
u1(1), (4.10)

where the second term on the right-hand side of (4.10) is due to centrifugal effects.
Substituting (4.3), (4.5), (4.7) and (4.8) into (4.9) and (4.10) and eliminating the

constant A produces the dispersion relation for axisymmetric waves in the unconfined
swirling jet:

0 = k2S2 + β(ω − k)2
J0(β)

J1(β)
+ ω2

√
k2

K0(
√

k2)

K1(
√

k2)
. (4.11)

See Lim & Redekopp (1998) for the dispersion relation with non-zero uniform axial
flow, and a potential vortex, outside the core, and see Gallaire & Chomaz (2003a) for
the dispersion relation for non-zero azimuthal wavenumbers for this more general
outer flow.

Figure 3 of Lim & Redekopp (1998) shows the arrangement of spatial branches
(contours of constant Im(ω)) for roots of (4.11) in the complex k-plane for S = 0.
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Figure 2. Contours of constant Im(ω) in the complex k-plane for the dispersion relation for
the unconfined jet (4.11) for S =2.882. Contours are at Im(ω) = −0.0788, −0.05074 and 0. This
flow is convectively unstable so the integration path can be placed in the Im(ω) < 0 region,
i.e. to the left of the Im(ω) = 0 contour, starting along the negative real k-axis and leaving the
diagram in the lower-right quadrant of the complex k-plane. The dominant saddle point (pinch
point) lies at k ≈ − 0.2514 − 2.382i, at which ω ≈ 3.463 − 0.05074i; the other saddle point lies
at k ≈ − 0.01014 − 4.984i, at which ω ≈ 4.704 − 0.07880i. The branch cut originally placed on
the imaginary k-axis has been removed so that solutions with Re(k) < 0 grow exponentially in
r as r → ∞, those with Re(k) > 0 decay exponentially in r .

At the pinch point k ≈ 0.6714 − 1.809i and ω ≈ 1.715 − 0.2835i, implying convective
instability in the axial direction because contours with Im(ω) > 0 cross from the
upper half-plane into the lower half-plane. When S is increased, Im(ω) at the pinch
point increases, and the pinch point moves towards the imaginary k-axis; it crosses
the imaginary k-axis at S ≈ 2.203, and then the eigenvalues at the pinch point are
k ≈ −2.245i and ω ≈ 2.809−0.2266i. Lim & Redekopp (1998) and Gallaire & Chomaz
(2003a) do not consider this dispersion relation for S > 2.203 because of the difficulty
of interpreting modes that cross into the left half-plane. The analytic continuation

into the left half-plane is obtained by replacing
√

k2 by −
√

k2 in (4.7), and hence in
(4.11), i.e. by considering waves that grow exponentially with radius far from the jet
core: see (A 1).

However, of particular physical significance is the value of S = 2.882 at which the
k+ spatial branch (a branch that lies in the upper half-plane for large positive Im(ω),
and corresponds to a downstream-propagating wave) with Im(ω) = 0 touches the
imaginary k-axis: see figure 2. For S > 2.882, k+ spatial branches with Im(ω) > 0 cross
into the lower-left quadrant of the complex k-plane. In Briggs’ method the integration
path, which is originally placed on the real k-axis, is moved so as to remain below
the k+ branch as Im(ω) is reduced. The integration path then goes from −∞ on the
negative real k-axis on the Riemann sheet with radially decaying solutions, to the
origin, then follows below, and to the left, of the Im(ω) = 0 contour, and therefore
crosses the imaginary k-axis onto the Riemann sheet with radially growing solutions. It
then re-crosses this axis back onto the Riemann sheet with radially decaying solutions
in the right half-plane. The integration path would finally return to the real k-axis, but
this is not possible for the dispersion relation (4.11) because the discontinuities in (4.1)
generate Kelvin–Helmholtz instability at arbitrarily short scales, causing all contours
to tend to infinity in the lower-right quadrant. The ill-posed nature of this initial-value
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problem caused Gallaire & Chomaz (2003a) to suggest that this dispersion relation
might also be unreliable in its prediction of modes crossing into the left half-plane.
However, this behaviour persists in a smooth-profile version of the problem: see § 5.

The physical interpretation for branches that cross into the left half-plane was first
given in Healey (2006b), and the findings from that paper allow us to deduce the
following description for disturbances to this swirling jet.

For S just larger than 2.882 the flow is convectively unstable, so one could consider
the response to periodic forcing. If the forcing frequency is chosen to lie within
the range of frequencies for which the k+ branch with Im(ω) = 0 lies in the left
half-plane, then the forced response will be a mode that grows exponentially in r

for large r . However, at finite times after the forcing is switched on, this mode will
only have propagated a finite radial distance. Thus a wave growing exponentially
in r can, nonetheless, satisfy homogeneous boundary conditions at any given time.
The radial propagation of the front of this normal mode is part of the start-up
transient created when the periodic forcing is switched on, and it can be determined
from a consideration of the impulse response. The standard saddle-point method for
calculating the impulse response at large times can be adapted so that propagation in
the crossflow direction, as well as the usual streamwise direction, can be investigated.
The radial growth predicted by saddle points in the left half-plane can also be
independently confirmed by numerical evaluation of the wavenumber integral along
integration paths remaining on roots of the dispersion relation that decay in the
radial direction. It can be shown that disturbance energy created at the edge of the jet
propagates out into the free stream, and back upstream, in such a way that sustains
the exponential radial growth taking place outside the jet, where there is no shear
to supply energy for the growth. See Healey (2006b) for detailed calculations of this
type for disturbances in the rotating-disk boundary layer, where spatial branches with
Im(ω) > 0 also cross into the left half-plane.

The main difference between the rotating-disk flow and the swirling jet is that
while the eigenfunction in the former is exponential outside the boundary layer, the
eigenfunction outside the jet, (4.7), only behaves exponentially at large distances from
the jet axis: see (A 1). At these large radii this exponential term can be combined with
the complex exponential of the wavy part of the disturbance as in Healey (2006b):

p = p2(r) exp i(kz − ωt)

= AK0(
√

k2r) exp i(kz − ωt)

∼ A

(
π

2
√

k2r

)1/2

exp i(kz − ωt + i
√

k2r). (4.12)

Saddle-point theory can then be used on this combined exponential term to describe
radial propagation as well as axial propagation. The presence of the algebraic term
in r in (4.12) does not affect the propagation properties at leading order.

However, this growth in the radial direction only continues until the disturbance
reaches the boundary of the flow. Ordinarily, a boundary placed far from the jet
has little influence on the disturbances within the jet because of their exponential
radial decay outside the jet. Conversely, the boundary, however far away, has a major
effect on these modes that grow exponentially in the radial direction. The effects of
crossflow confinement on this type of mode were investigated in Healey (2007) for
waves in a model of the rotating-disk boundary layer. The typical effect on temporal
instability of moving a boundary closer to a shear layer whose modes decay in the
crossflow direction is one of increasing stabilization as the boundary approaches the
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shear layer and the flow becomes more confined. However, when disturbances grow in
the crossflow direction, Im(ω) at the pinch point increases when the flow is confined,
regardless of how far away the confining boundary is. This will enhance the growth
rate of an existing absolute instability, or can create an absolute instability where
previously there was only convective instability. Furthermore, Im(ω) at the pinch
point actually increases if the confining boundary is moved towards the shear layer
(although there is stabilization when the flow is strongly confined).

These counter-intuitive aspects of problems with modes growing in the crossflow
direction follow from an understanding of the effect of confinement on the complex-
wavenumber plane. As shown below, the major effect of confinement is to replace the
continuous spectrum associated with the branch-cut at the imaginary k-axis of the
unconfined problem by an infinite discrete spectrum in the confined problem. This
qualitative difference arises however weakly confined the flow is, and strongly affects
the behaviour of the Im(ω) = 0 spatial branch shown in figure 2 where it approaches
the imaginary k-axis.

4.2. Confined flow

We surround the swirling jet by an outer cylinder of dimensionless radius h, coaxial
with the jet, giving outer boundary condition u2(h) = 0, and therefore p′

2(h) = 0 by
(4.8). The solution to (4.6) is now

p2 = A′[I1(
√

k2h)K0(
√

k2r) + K1(
√

k2h)I0(
√

k2r)], (4.13)

where A′ is a constant of integration and Im is the order-m modified Bessel function
of the first kind. Substituting (4.3), (4.5), (4.8) and (4.13) into (4.9) and (4.10) and
eliminating the constant A′ produces the dispersion relation for axisymmetric waves
in the confined swirling jet:

0 = k2S2 + β(ω − k)2
J0(β)

J1(β)
+ ω2

√
k2

I1(
√

k2h)K0(
√

k2) + I0(
√

k2)K1(
√

k2h)

I1(
√

k2h)K1(
√

k2) − I1(
√

k2)K1(
√

k2h)
, (4.14)

in agreement with Lim & Redekopp (1998).
The large-argument asymptotic formulae for K1 and I1, (A 1) in the Appendix,

show that (4.14) approaches (4.11) for large Re(k)h, i.e. away from the imaginary
k-axis for large enough h. However, even when h is large, (4.14) differs substantially
from (4.11) when Re(k) = O(h−1). Therefore, confinement is a singular perturbation
to the dispersion relation with significant effect close to the imaginary k-axis, and
negligible effect away from the imaginary k-axis. This is why the spatial branch with
Im(ω) = 0 shown in figure 2 is strongly affected by confinement, however large the
radius of the outer cylinder.

We now show that the main qualitative effect of confinement is to replace the
continuous spectrum associated with the branch cut at the imaginary k-axis due to

the term
√

k2, with an infinite discrete spectrum. Rules concerning Bessel functions,

(A 2) in the Appendix, can be used to verify that (4.14) is invariant under
√

k2 → −
√

k2.
Therefore, the branch cut present in the unconfined dispersion relation (4.11) is not
present in the confined dispersion relation (4.14). The presence of the infinite discrete
spectrum in (4.14) is most easily seen from the poles of the relation ω = ω(k), i.e.
points in the complex k-plane where ω → ∞. Spatial branches start and/or finish
on such points. The poles lie on the imaginary k-axis, and can be found by letting
ω → ∞, and k = iki , in (4.14), which leads to

J1(hki) [J1(ki)Y0(ki) − J0(ki)Y1(ki)] = 0, (4.15)
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where Ym is the order-m Bessel function of the second kind, and relations (A 3)
from the Appendix have been used to simplify expressions. The poles created by
confinement are given by the zeros of J1(hki), the first few of which are hki ≈ ± 3.83,
±7.02, ±10.17 . . . . The function J1 is oscillatory along the real axis of its argument,
so there are infinitely many poles created by confinement, and they are O(h−1) apart
along the imaginary k-axis when h is large. Note that the position of the poles is
independent of the swirl, S.

Healey (2007) studied the effects of confinement in a piecewise linear planar flow
and found that there is a pair of branch-points connecting two Riemann surfaces
of solutions ω = ω(k) close to each pole for large h. In that problem the dispersion
relation is a quadratic equation in ω, but (4.14) is a transcendental equation in ω, with
the possibility of many ω solutions of (4.14) coexisting for a given value of k, i.e. many
Riemann surfaces of solutions ω =ω(k) in the complex k-plane connected by many
branch-points. However, there are only a few solutions with Im(ω) > 0. Nonetheless,
the structure of the ω solutions of (4.14), and their poles and branch-points, is still
relatively complicated. Figure 3 shows graphs of Im(ω) along the negative imaginary
k-axis when h = 5. One of the ω roots of (4.14) corresponds to the surface of solutions
of (4.11) shown in figure 2 as h → ∞. Branch cuts could be placed along the imaginary
axis of the complex k-plane between pairs of these branch points to define the extent
of each Riemann surface.

The Riemann surface of Im(ω) for the confined dispersion relation, (4.14),
corresponding to that for the unconfined dispersion relation, (4.11), shown in figure 2,
is presented in figure 4. Contours of constant Im(ω) that terminate on the imaginary
k-axis have encountered branch cuts (the branch cuts and branch points are not
shown in this figure, but the branch points are shown in figure 3). However, the
most important result is that, as in Healey (2007), there is a saddle point associated
with each pole created by confinement. Some of these new saddle points in the
confined flow are higher than any saddle point of the unconfined flow, and create
absolute instability in the confined flow even though the unconfined flow is only
convectively unstable for this value of the swirl, S. As h → ∞ the poles become closer
together and the confinement saddle points asymptote towards the imaginary k-axis,
but some always remain in the Im(ω) > 0 part of the Riemann surface because the
Im(ω) = 0 contour in the unconfined problem touches the imaginary k-axis. Therefore,
the confined flow remains absolutely unstable for arbitrarily large h. The physical
explanation for this behaviour at large h lies in confinement converting the radial
growth and propagation of disturbances found in the unconfined problem into a
standing wave once they eventually reach the outer cylinder. This mechanism is
explored in more detail in Healey (2007).

The creation of absolute instability by confinement allows a neutral curve for
axisymmetric absolute instability to be constructed in the (h, S)-plane and this is
shown in figure 5(a). As h is varied the confinement saddle points move in the
complex k-plane, and Im(ω) at each saddle changes, and so dominance switches from
saddle to saddle. These changes in dominance account for the series of jumps in
gradient of the neutral curve for absolute instability. The absolute frequencies and
wavenumbers along the neutral curve are also shown, and they asymptote towards
the eigenvalues at the point where the Im(ω) = 0 contour touches the imaginary k-
axis in the unconfined problem as h → ∞ because as h increases the saddle points
created by confinement asymptote towards the imaginary k-axis. As in Healey (2007),
the trend is for absolute instability to increase when h is reduced until eventually h

becomes small enough and then confinement exerts the stabilizing influence that it is
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Figure 3. Behaviour of solutions for ω of (4.14) along the imaginary k-axis for h = 5. Solid
lines are Im(ω) for purely imaginary roots of (4.14); dashed lines are Im(ω) for pairs of roots
of (4.14) whose real parts have equal magnitude but are of opposite sign. The dashed lines
emerge from branch points where a pair of solid lines meet. (b) is an enlargement of (a). There
are up to three values of ω with Im(ω) > 0 satisfying (4.14) over the interval of the imaginary
k-axis shown. The vertical asymptotes are the poles of ω = ω(k), which lie at values of k that
satisfy (4.15).

usually associated with. However, although even strong confinement can destabilize
an absolute instability (see Juniper 2006), we shall not consider h → 1 since (4.1)
is not plausible in this limit (viscous effects would then be important because the
boundary layer on the confining outer cylinder would interact with the jet core).

4.3. Benjamin’s criticality condition

The supercritical–subcritical transition occurs when a dispersion relation admits
solutions with zero phase velocity and zero wavenumber. Setting ω = 0, and letting
k → 0, in either (4.11) or (4.14) leads to the same eigenrelation for the swirl, S:

0 = 2J0(2S) + SJ1(2S). (4.16)

As the swirl increases from zero, the first root of (4.16) to be encountered is S ≈ 1.4946.
There are infinitely many roots, but this is the one with smallest positive S. For
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Figure 4. Contours of constant Im(ω) in the complex k-plane for the dispersion relation
for the confined jet (4.14) for S = 2.882 and h = 5. Contours are at the levels of the
saddle points created by confinement; the saddles, and Im(ω) for each one, in the form
(k, Im(ω)), are at (0.167 − 0.840i, −0.319), (0.312 − 1.574i, −0.056), (0.408 − 2.283i, 0.228),
(0.414 − 3.01i, 0.250), (0.417 − 3.800i, 0.171), (0.475 − 4.584i, 0.121), (0.481 − 5.289i, −0.009)
and (0.414 − 6.090i, −0.323). The dominant saddle point (pinch point), marked P , lies at
(0.414 − 3.01i, 0.250). The integration path lies in the region Im(ω) < 0.250, passing along the
negative real k-axis to the origin, then over the saddle at P and finally following below the
Im(ω) = 0.250 contour to the right of the diagram. The poles are marked by solid disks.
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Figure 5. (a) Neutral curve for absolute instability for the confined-flow dispersion relation
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Figure 6. (a) Right-hand side of dispersion relation for unconfined swirling jet (4.11) against
real frequency ω, for k = 0.01 and S = 1.47. (b) Dispersion relations for neutral inertial waves
in slightly supercritical flow, S = 1.47. (c) Dispersion relations for neutral inertial waves in
slightly subcritical flow, S =1.52.

S < 1.4946 the flow is supercritical, and it becomes subcritical for S > 1.4946 for both
the confined and unconfined dispersion relations.

Therefore, although the absolute instabilities of this model swirling jet depend
sensitively on the nature of the confinement, Benjamin’s criticality condition is
independent of the confinement of this swirling jet. We wish to explore this criticality
condition from the perspective of Briggs’ method, and we start with some well-known
observations for this type of flow.

At a given positive value of S there are infinitely many neutral inertial waves. This
is illustrated in figure 6(a), where the right-hand side of (4.11) has been plotted as
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a function of ω for k = 0.01 and for a slightly supercritical value of S =1.47. Every
zero of this function corresponds to a neutral temporal eigenvalue, and the function
oscillates around zero infinitely many times as ω → k, since then β → ∞ by (4.4).
The criticality condition, A in figure 1(a), is met when S is such that the curve in
figure 6(a) passes through the origin as k → 0; standing waves of axial wavelength L

appear in a pipe of length L at the S for which the curve in figure 6(a) passes through
the origin when k = 2π/L, which corresponds to B in figure 1(a). Therefore, B → A

as L → ∞. The dispersion relations for the first few of these neutral waves are shown
in figure 6(b), which makes clear the existence of a mode with small phase velocity
corresponding to the intersection of the curve with the horizontal axis near the origin
in figure 6(a); the accumulation of modes whose phase velocity approaches unity is
also apparent.

The important qualitative change that takes place when the flow becomes subcritical
is shown in figure 6(c). The mode with small positive phase velocity in the supercritical
case now has a small negative phase velocity over a finite interval of k. The finite
value of k = k0 where this mode has zero phase velocity gives the length of pipe,
L = 2π/k0, in which a standing wave first appears at this level of swirl, i.e. point B in
figure 1(a). This length rapidly reduces as the swirl increases above its critical value.
Similar diagrams are shown in figure 3 of Gallaire & Chomaz (2004) for the Rankine
vortex with axial flow, where spatial dispersion relations, i.e. k as a function of ω, are
also shown.

These neutral inertial waves can be described using a long-wave theory: substituting
ω = c0k in (4.11) or (4.14), and considering k → 0, gives at leading order

0 = 2J0

(
2S

1 − c0

)
+

S

1 − c0

J1

(
2S

1 − c0

)
. (4.17)

For example, when S = 1.47, the neutral inertial waves are c0 = 0.0165, 0.5465, 0.6998,
0.7744, 0.8189, . . . , in good agreement with the gradients at the origin of the curves
in figure 6(b). However, in this long-wave limit, the unstable wave, which can give rise
to absolute instability, has c0 = 1 + 0.6479i at S =1.47, and therefore corresponds to
a branch of the dispersion relation that is distinct from the inertial waves. Benjamin’s
criticality condition would therefore not be seen in a study of the complex k-plane for
the unstable mode, since it lies on a different Riemann surface. However, Loiseleux
et al. (1998) found that non-axisymmetric unstable modes can resonate and interact,
i.e. form branch points, with non-axisymmetric neutral inertial modes; we expect the
same to occur for the flow considered here.

From the point of view of Briggs’ method, however, the feature of particular
interest in figure 6(c) is the local minimum in the dispersion relation of the mode
with negative phase velocity. At this point dω/dk = 0 and so a saddle point exists on
the real k-axis, which is not present in the dispersion relations of the supercritical
flow shown in figure 6(b). Contours of constant Im(ω) in the complex k-plane for a
supercritical and subcritical level of swirl are shown in figure 7.

In the supercritical flow (figure 7a), the integration path can be deformed below
the real k-axis into the region where Im(ω) < 0. Therefore, although axially periodic
waves are neutrally stable, an impulsive disturbance will be carried downstream
and the disturbance decays exponentially in the rest frame, as in Wang & Rusak
(1996). In the subcritical flow (figure 7b), the integration path can be deformed
into the valleys of the saddle point on the real k-axis, and passes over this saddle
point, where Im(ω) = 0. Although this saddle is neutrally stable, saddle-point theory
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predicts that an impulsive disturbance will decay like t−1/2, i.e. much more slowly than
the exponential decay of the supercritical flow. Wang & Rusak found exponential
growth in the subcritical flow in a finite-length pipe via a mechanism that depends
on the interaction of disturbances with the upstream and downstream boundary
conditions.

The criticality condition, S = 1.4946, is lower than the condition for absolute
instability shown in figure 5 (except for a vary narrow range of h), so as the swirl is
increased the steady transcritical bifurcation associated with criticality occurs before
any unsteady bifurcation associated with the absolute instability. However, this is not
always the case for the physically more realistic swirling jet models considered in the
next section.

5. A model swirling jet with smooth velocity profiles
The model swirling jet velocity profiles (4.1) have discontinuities at the jet edge, and

so both dispersion relations (4.11) and (4.14) predict amplification disturbances of
arbitrarily short length scales by Kelvin–Helmholtz instability. This prevents the
integration path in the complex-wavenumber plane from returning to the real-
wavenumber axis, and makes both initial-value problems ill-posed. Absolute instability
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calculations are concerned with determining the behaviour of the initial-value problem
at large times, so it might be argued that (4.1), and therefore (4.11) and (4.14),
are unsuitable for such investigations, and perhaps the counter-intuitive behaviours
described in § 4 are artifacts of the discontinuities in (4.1). We show in this section
that this is not the case. We present stability results for smooth jet profiles that
confirm that (4.1) is a good model when the shear layer at the jet edge is relatively
thin, that the behaviour shown in figure 2 is reproduced in this case, and that the
short-wave stabilization produced by introducing a finite-thickness shear layer at the
jet edge does not alter the dominance of the saddle points. The effects of increasing
the thickness of this shear layer are also investigated.

Consider the dimensionless model swirling-jet velocity profiles

V (r) =
Sr

2

[
1 − erf

(
r − 1

d

)]
, W (r) =

1

2

[
1 − erf

(
r − 1

d

)]
, (5.1a, b)

where

erf(x) =
2√
π

∫ x

0

e−t2 dt (5.2)

is the error function, which has the property limx→±∞ erf(x) = ± 1. These profiles
produce shear layers of dimensionless thickness d at the edge of the jet for both axial
and azimuthal profiles, and they are exponentially close to (4.1) when |r − 1|/d is
large.

Gallaire & Chomaz (2003b) have also considered smooth velocity profiles that
decay to zero outside the jet. Their models are more complicated and have a number
of parameters that were tuned to give best fit to the experimental profiles of Billant
et al. (1998). However, (5.1) captures the essential properties required for present
purposes.

The model profiles (5.1) are substituted into (3.3), which are solved numerically
with boundary conditions for unconfined flow. An advantage of these profiles is that,
away from the shear layers at the jet edge, the analytic solutions (4.3) and (4.7) apply,
and can be used to produce initial conditions for the numerical solution on each
side of the shear layer. The linearized equations are solved by integrating (3.3) from
r = 1 − 4d to r = 1, and from r = 1 + 4d to r =1, and the solutions from each side of
the shear layer are matched by requiring p/p′ to be continuous at r = 1, to produce
roots of the dispersion relation. To ensure the accuracy of (4.3) in providing initial
conditions at r = 1 − 4d we only consider 0 < d < 1/4. There is no stiffness in the
differential equations even when d is numerically small, because the integration range
scales with d .

5.1. Absolute instability of the unconfined smooth flow

Figure 8 shows contours of constant Im(ω) for basic flow (5.1) with S = 2.846 and
d = 0.005. This figure confirms that the behaviour seen in figure 2 for the model
profiles (4.1) also occurs for smooth continuous profiles. Both saddle points have
Im(ω) < 0 and so the flow is not absolutely unstable. It is convectively unstable in
the downstream direction, on account of the Im(ω) = 0 contour crossing the real
k-axis from the upper half-plane into the lower half-plane. Furthermore, the flow is
incipiently convectively unstable in the radial direction, on account of the Im(ω) = 0
contour crossing the imaginary k-axis from the right half-plane into the left half-plane
for marginally increased swirl, S. However, confining the jet within a cylinder co-axial
with the jet will convert this radial convective instability into an absolute instability,
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Figure 8. Contours of constant Im(ω) in the complex k-plane for the dispersion relation for the
smooth unconfined jet (5.1) for S =2.846 and d = 0.005. Contours are at Im(ω) = − 0.04585,
−0.03313 and 0. The dominant saddle point (pinch point) lies at k ≈ 0.0281 − 4.973i, at
which ω ≈ 4.611 − 0.03313i; the other saddle point lies at k ≈ − 0.2387 − 2.379i, at which
ω ≈ 3.402 − 0.04585i. The branch cut originally placed on the imaginary k-axis has been
removed so that solutions with Re(k) < 0 grow exponentially in r as r → ∞, and those with
Re(k) > 0 decay exponentially in r . In (a) the integration path lies to the left of the Im(ω) = 0
contour, as in figure 2. A larger part of the complex k-plane is shown in (b), and the integration
path lies below the Im(ω) = 0 contour and returns to the positive real k-axis for Re(k) > 220
(the different contours are indistinguishable on this scale).

even when the radius of the cylinder is very large, due to the creation of additional
saddle points near the imaginary k-axis, as in figure 4.

Figure 8(b) shows that the introduction of the finite thickness shear layer at the jet
edge stabilizes short wavelength waves and allows the integration path to reach the
positive real k-axis, thus creating a well-posed initial-value problem, in contrast to the
model jet profiles (4.1). No additional saddle points with Im(ω) > 0 are encountered
for these S and d by the introduction of the shear layer at the jet edge.

However, increasing the thickness, d , of the shear layer at the jet edge sufficiently
does have a qualitative effect on the stability characteristics. Figure 9 shows the neutral
curve for absolute instability when the shear layer at the jet edge is included. It is
verified that the stability characteristics obtained numerically for the smooth velocity
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Figure 9. The solid line is the neutral curve for absolute instability for the smooth profiles (5.1)
with unconfined flow; the line with short dashes is where the Im(ω) = 0 contour touches the
imaginary k-axis, which indicates when the corresponding confined problem will be absolutely
unstable as h → ∞; lines with long dashes indicate subdominant, or irrelevant, saddle points
with Im(ω) = 0. (a) is an enlargement of (b). Values at d = 0 were obtained using (4.11).
Eigenvalues at the pinch points on the neutral curve are shown in figure 11.

profiles (5.1) approach those obtained analytically, (4.11), from the discontinuous
profiles (4.1) as d → 0. The main observation to be made is that increasing d tends
to destabilize the flow. The incipient radial convective instability for d = 0.005 occurs
at S =2.846, while it occurs at 2.882 in the discontinuous model (4.1). Comparing
figures 2 and 8 also shows that both saddle points have their Im(ω) raised when
the shear layer thickness is raised from zero to d = 0.005, with the saddle nearer
the imaginary k-axis showing the greater increase in Im(ω), and becoming dominant.
These trends continue as d increases further, and for d > 0.0088 the flow becomes
absolutely unstable, with no contours with Im(ω) greater than at the dominant saddle
(pinch point) crossing into the left half of the complex k-plane, i.e. a ‘conventional’
absolute instability. Note that when d < 0.0088 the flow is absolutely unstable for
large enough swirl although the pinch point crosses into the left half-plane. In fact,
the destabilization produced by thickening the shear layer is relatively strong. When
the shear layer thickness is increased from d = 0.01 to d = 0.1, the swirl required
to produced absolute instability is reduced from S =2.797 to S = 1.581. Although
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for d > 0.0088 confinement is not necessary to create a conventional right half-plane
absolute instability, it can still enhance the absolute instability: see § 5.2 below.

Therefore, the introduction of a finite-thickness shear layer stabilizes the short
waves that arise from the Kelvin–Helmholtz instability at the jet edge, but it also
destabilizes longer waves since it reduces the swirl necessary to produce absolute
instability. The latter instability mechanism appears to be related to an enhancement
of the centrifugal instability present in the shear layer. In the absence of mean
axial shear Rayleigh’s criterion applies, and the flow is centrifugally unstable where
the square of the circulation decreases, and it is stable otherwise. The piecewise
linear profile (4.1) is centrifugally stable everywhere, except at the jet edge where
the circulation drops discontinuously to zero. Howard & Gupta (1962) have shown
that with mean axial shear the square of the circulation must increase sufficiently
quickly to guarantee stability (a quantity analogous to the local Richardson number
of stratified flows must be greater than 1/4), but axial shear does not necessarily
produce, or enhance, centrifugal instability. These stability theorems give insight into
the temporal stability properties of a flow, but do not offer guidance on changes
between convective and absolute instabilities. However, increasing d increases the
domain over which centrifugal instability acts, and it may be that this extension of
the centrifugally unstable part of the flow is responsible for the enhancement of the
axisymmetric absolute instability. Increasing d would also increase the effective Taylor
number in the corresponding viscous problem if the rotating core of the jet is treated
like the rotating inner cylinder, and the stationary outer fluid is treated like the fixed
outer cylinder, of a Taylor–Couette experiment (again, an increase in Taylor number
makes no definite prediction concerning changes in absolute instability).

5.2. Benjamin’s criticality condition for the smooth flow

The numerical procedure for obtaining eigenvalues for the smooth profiles (5.1) is
adapted for working in the limit k → 0 so that Benjamin’s criticality condition for
the supercritical-subcritical transition can be calculated. We substitute

u(r) = ku0(r), v(r) = v0(r), w(r) = w0(r), p(r) = p0(r), ω = 0 (5.3)

into (3.3) and equate leading-order powers of k to give

u′
0 +

u0

r
+ iw0 = 0, (5.4a)

−2V

r
v0 = −p′

0, (5.4b)

iWv0 + V ′u0 +
V

r
u0 = 0, (5.4c)

iWw0 + W ′u0 = −ip0. (5.4d)

Eliminating u0, v0 and w0 from (5.4) gives

r2W 2V (V + rV ′)p′′
0 − rW 2[r2V V ′′ + (rV ′)2 − 3V 2]p′

0 + 2V 2(V + rV ′)2p0 = 0. (5.5)

There is a critical point of (5.5) at r = rc where V (rc) + rcV
′(rc) = 0. The critical point

for (5.1a) lies at rc ∼ 1 − d
√

− ln(2
√

πd) for small d . Close to this point the two
independent solutions of (5.5) are regular, and are of the form p0 = 1+O(r − rc)

3 and
p0 = (r − rc)

2 + O(r − rc)
3. Equation (5.5) is integrated from r = 1 − 4d (using initial

conditions provided by (4.3)) to r = rc − d/10, then from r = rc + d/10 to r =1 + 4d

with p0(rc + d/10) = p0(rc − d/10) and p′
0(rc + d/10) = − p′

0(rc − d/10) so that the
quadratic behaviour of p0 near r = rc, with p′

0(rc) = 0, is exploited. At a given value
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Figure 10. The solid line is the neutral curve for absolute instability for the smooth profiles,
(5.1); the dashed line B shows Benjamin’s supercritical–subcritical transition; other dashed
lines are as in figure 9. (a) is for unconfined flow, (b) is for confined flow with h = 2.2.
Discontinuous model profiles, (4.1), give Benjamin’s criticality condition at S = 1.4946, while
for the smooth profiles, (5.1), criticality is at S =1.4025 at d = 0.001.

of d , the swirl, S, is iterated until p′
0(1 + 4d) = 0 to within some tolerance. We find

that this value of S causes p0 to drop rapidly to zero outside the shear layer. This is
in contrast to the behaviour of the outer solution (4.1) of the discontinuous profile,
which decays very slowly with increasing r as k → 0. This difference between the
behaviour of the solution of the smooth model and the discontinuous model leads
to a small finite difference in swirl at criticality between the smooth profile as d → 0
and the discontinuous profile (see caption to figure 10). However, the rapid decay
of the solution outside the shear layer means that, as with the discontinuous profile,
Benjamin’s criticality condition for the smooth profile is independent of whether the
flow is radially confined or not.

Figure 10 shows Benjamin’s criticality condition and the neutral curve for absolute
instability for the smooth model swirling jet (5.1). In the unconfined flow the
supercritical–subcritical transition occurs at lower swirl than the absolute instability
for d < 0.1024 and the absolute instability occurs at lower swirl for d > 0.1024. Figure 5
shows how confinement destabilizes the absolute instability for the discontinuous
profiles, and that the strongest destabilization occurs near h = 2.2. Figure 10(b) shows
that this confinement is also strongly destabilizing for the smooth profiles, and causes
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Figure 11. Frequencies and wavenumbers at pinch points along neutral curves for absolute
instability for the smooth profiles, (5.1). (a)–(c) are for the neutral curve for the unconfined
problem shown in figure 10(a); the eigenvalues to the left of the discontinuities correspond to
those at the point where the Im(ω) = 0 contour touches the imaginary k-axis, as in figure 8(a).
(d)–(f) are for the neutral curve for the confined flow with h = 2.2 shown in figure 10(b).

Benjamin’s criticality condition to dominate only for d < 0.0105, while the absolute
instability dominates for d > 0.0105.

The dependence of the eigenvalues at the pinch-point along the neutral curves for
absolute instability on the thickness of the shear layer at the edge of the jet is shown
in figure 11.

6. Conclusions
The spatio-temporal linear stability characteristics of axisymmetric disturbances to

model swirling-jet velocity profiles in the inviscid limit have been investigated. The
swirl at the convective–absolute transition is compared to the swirl at the supercritical–
subcritical transition. A discontinuous-model swirling jet of Lim & Redekopp (1998),
(4.1), for which an analytic dispersion relation can be derived, (4.11), has been re-
examined. Particular attention has been paid to the crossing of the pinch point
from the right half of the complex-wavenumber plane into the left half-plane. The
results of Healey (2006b) and Healey (2007) have been used to provide a physical
interpretation for this behaviour in the wavenumber plane. The presence of spatial
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branches with Im(ω) > 0 crossing into the left half-plane indicates propagation and
exponential growth in the radial direction for large times in the unconfined flow. If
the flow is radially confined, by surrounding the jet with an outer cylinder coaxial
with the jet, then additional saddle points are created near the imaginary axis of
the complex-wavenumber plane, and these can create absolute instability, or enhance
existing absolute instability. This can take place however large the radius of the outer
cylinder. Physically, the waves propagate radially outwards as in the unconfined flow
until they reach the confining outer cylinder, and then they set up absolutely unstable
standing waves. Neutral curves for axisymmetric absolute instability in swirling jets
confined by an outer cylinder have been obtained using the analytical dispersion
relation for the confined jet, (4.14).

These results for the model (4.1) are open to the criticism that the basic flow does
not lead to a well-posed initial-value problem because the discontinuities produce
Kelvin–Helmholtz instability at arbitrarily short length scales, and the absolute–
convective stability calculations involve determining the response to an initial-value
problem at large times. This issue has been addressed by presenting results for a
family of smooth velocity profiles, (5.1), obtained by numerical integration of the
inviscid linearized stability equations. These profiles produce a well-posed initial-
value problem, and the numerical stability results confirm those of the discontinuous
model. Furthermore, they reveal the role of centrifugal instability in driving the
absolute instability of axisymmetric waves.

Centrifugal instability acts in the shear layer at the edge of the jet, and is found
to enhance the absolute instability as the shear layer thickens due to the associated
radial extension of the centrifugally unstable region. Loiseleux et al. (2000) also
found that centrifugal instability leads to axisymmetric absolute instability, though
in a less physical model swirling jet. Indeed, centrifugal instability may be essential
in creating axisymmetric absolute instability. Previous spatio-temporal studies of
swirling jets that found no axisymmetric absolute instability were for model jets that
have no centrifugal instability: Loiseleux et al. (1998) considered the Rankine vortex
with axial flow; Delbende et al. (1998) and Olendraru et al. (1999) considered the
Batchelor vortex. Both of these flows have an outer potential vortex and the circulation
increases monotonically with radius. Gallaire & Chomaz (2003b) have investigated
the stability of profiles that do decay to zero outside the jet, and so are susceptible to
centrifugal instability. Their results are restricted to S < 1.6, which is appropriate
to the ‘pre-breakdown’ state, and they too found that centrifugal instability
enhances absolute instability. However, they did not find axisymmetric absolute
instability. They used Delbende et al. (1998)’s method based on direct numerical
simulation of impulsive disturbances using linearized equations, which requires Re(k)
to be sufficiently large for the axisymmetric waves to decay radially within the
computational domain. The results in the present paper reveal the importance of
waves with small Re(k) in axisymmetric absolute instability. Delbende et al. (1998)’s
method would be better suited to the study of swirling jets confined within
pipes.

The following scenario can therefore be envisaged: in an experiment on a swirling
jet issuing from a nozzle at relatively large Reynolds numbers, the jet will have a thin
shear layer at its edge, whose thickness will increase with downstream distance by
viscous diffusion. The dependence of the jet’s swirl on the downstream distance will
be weaker (viscosity acts more strongly in thin layers), so to a first approximation the
swirl will be constant. Figure 9 suggests, therefore, that for 1.5 <S < 2.98 the jet will
be convectively unstable as it leaves the nozzle, it will remain convectively unstable
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for some distance downstream, until the shear layer reaches a critical thickness, at
which point the jet becomes absolutely unstable to axisymmetric waves.

A location where the flow undergoes a transition from convective to absolute
instability provides a site for the appearance of a steep-fronted nonlinear global
mode according to Couairon & Chomaz (1999) and Pier et al. (2001). The absolute
instability frequency at this transition point drives the frequency of the global
mode (the transition region acts as a wavemaker) and the imaginary part of the
absolute instability wavenumber determines the spatial amplification of the front.
Such modes could be related to the appearance of unsteady vortex breakdown. In
contrast, the supercritical-subcritical transition of Benjamin involves waves of zero
frequency and zero wavenumber and is associated with steady bifurcations leading
to steady vortex breakdown. Benjamin’s criticality condition has been shown to be
independent of whether the flow is confined or unconfined in the radial direction,
but the absolute instability has been shown to be sensitive to the confinement, with
confinement creating absolute instability in the case of the discontinuous profiles,
(4.1), and enhancing absolute instability in the case of the smooth profiles, (5.1). In
the discontinuous profiles Benjamin’s criticality condition occurs at lower swirl than
the absolute instability: see § 4.3. In the unconfined smooth profiles, with shear layer
thickness d (based on jet radius), the absolute instability occurs at lower swirl than
Benjamin’s criticality for d > 0.1024: see figure 10(a). In the confined smooth profile
the absolute instability occurs at lower swirl than Benjamin’s criticality for d > 0.0105
when h = 2.2: see figure 10(b).

It is therefore possible to have subcritical flows that are convectively unstable, and
supercritical flows that are absolutely unstable.

Early authors made a strong distinction between theories for vortex breakdown
based on hydrodynamic instability of a basic flow, and theories based on it being
due to a change in criticality of the flow. Experimental (and numerical) evidence
presented in favour of vortex breakdown being a criticality phenomenon is that
its sharp onset is very much in contrast to instabilities in other shear flows, which
tend to produce relatively weak streamwise amplification. However, as argued in the
Introduction, the theory of absolute and convective instabilities incorporates both
instability and propagation characteristics, i.e. the principal components of what had
been considered to be rival theories. The steep-fronted nonlinear global mode theory
of Couairon & Chomaz (1999) and Pier et al. (2001) predicts a sharp onset of a fully
nonlinear state at a location where the flow becomes absolutely unstable, so this could
be consistent with an unsteady vortex breakdown produced by absolute instability.
(Weak streamwise amplification in shear layers is in fact typical of convectively
unstable flows, but not necessarily of absolutely unstable flows.)

There is experimental and numerical evidence for unsteady vortex breakdown. The
experiments of Escudier (1984), where a swirling jet is created in a closed cylinder with
a rotating endwall, show periodically oscillating vortex breakdown at high Reynolds
numbers. The axisymmetric numerical simulations of Ruith et al. (2003) also show
oscillating axisymmetric vortex breakdown at higher Reynolds numbers, though this is
overwhelmed by non-axisymmetric secondary instabilities when the non-axisymmetric
terms are re-introduced. Lopez (1994) found numerically an unsteady axisymmetric
branch of vortex breakdown solutions at high enough swirl; these periodic solutions
are lost at a limit point as the swirl is reduced. Unsteady axisymmetric vortex
breakdown was observed in the experiments of Liang & Maxworthy (2005) at swirls
just below that at which a steady non-axisymmetric breakdown occurred. They also
noted that a small modification to the mean flow (produced by using an alternative
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method for generating swirl in the jet) had a significant effect on the critical swirl
required for breakdown. Our studies suggest that the convective–absolute transition,
which may cause axisymmetric unsteady breakdown, also depends sensitively on the
details of the mean velocity profiles.

Leibovich (1983) has argued that vortex breakdown is an essentially inviscid
phenomenon, and Spall, Gatski & Grosch (1987) have found that a critical swirl for the
onset of vortex breakdown that correlates well with experimental results for a range
of swirling flows with uniform density is S >Scrit = 1.67 ± 0.08. We have presented
parameter ranges for flows where either the supercritical–subcritical transition (steady
vortex breakdown) or the convective–absolute instability transition (possible unsteady
vortex breakdown) can occur in inviscid flows as the swirl is increased. However, the
preceding discussion of unsteady vortex breakdown highlights the importance of both
Reynolds number and swirl in the selection of steady or unsteady vortex breakdown.
The discussion in § 2.1 shows the qualitative changes that can occur to the steady
bifurcations when viscosity is included, and also the difficulties that can exist in
relating inviscid theories to numerical and experimental studies at finite Reynolds
numbers. Some qualitative differences in the unsteady solutions may also be present
between viscous and inviscid versions of the theory.

In the inviscid theory presented here, the columnar basic state is an exact
solution and the transition to absolute instability with increasing swirl is expected
to correspond to a Hopf bifurcation; nonlinear terms may either lead to a saturated
stable limit cycle or further destabilize the flow. The Hopf bifurcation can sit either
to the left, or to the right, of A on branch I/V in figure 1(a). At the codimension-two
points where the criticality condition coincides with the onset of absolute instability
in figure 10, the Hopf bifurcation occurs at A. The nonlinear interaction between
steady and unsteady bifurcations can lead to rich dynamical behaviour, as found, for
example, by Healey et al. (1991) in another context. In the viscous version, the basic
state evolves in the axial direction and the transition from convective to absolute
instability can occur at a particular axial location. As discussed above, this can be
the position where a steep-fronted global mode originates, and would correspond to a
limit point of periodic solutions, as found by Lopez (1994). These periodic solutions
might still be traced back to a Hopf bifurcation from a steady solution branch
in figure 1(b). Again, there may be dynamically significant codimension-two points
where these Hopf bifurcations interact with limit points of steady solution branches.
An extension of the present work including viscous and nonlinear effects would be
required in order to investigate these issues.

Appendix. Some properties of Bessel functions
In this Appendix x has positive real part. The large-argument expansions for Kn

and I1 when the real part of x is large are

Kn(x) ∼
(

π

2x

)1/2

e−x, (A 1a)

I1(x) ∼
(

1

2πx

)1/2

ex. (A 1b)

Changing the signs of arguments of Bessel functions gives

J0(−x) = J0(x), J1(−x) = −J1(x), (A 2a, b)
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I0(−x) = I0(x), I1(−x) = −I1(x), (A 2c, d )

K0(−x) = K0(x) − iπI0(x), K1(−x) = −K1(x) − iπI1(x), (A 2e, f )

and multiplying the argument by i gives

I0(ix) = J0(x), I1(ix) = iJ1(x), (A 3a, b)

K0(ix) = −π

2
Y0(x) − i

π

2
J0(x), K1(ix) = −π

2
J1(x) + i

π

2
Y1(x). (A 3c, d )
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